quinta-feira, 9 de setembro de 2010

charge celulas tronco

MEMBRANA CELULAR

 MEMBRANA PLASMATICA


A membrana celular, também conhecida por plasmalema, é a estrutura que delimita todas as células vivas, tanto as procarióticas como as eucarióticas. Ela estabelece a fronteira entre o meio intra-celular, o citoplasma, e o meio extracelular, que pode ser a matriz dos diversos tecidos.
Aparece em eletromicrografias como duas linhas escuras separadas por uma faixa central clara, com uma espessura de 7 a 10 nm. Esta estrutura trilaminar encontra-se em todas as membranas encontradas nas células, sendo por isso chamada de unidade de membrana ou membrana unitária.
A membrana celular não é estanque, mas uma “porta” seletiva que a célula usa para captar os elementos do meio exterior que lhe são necessários para o seu metabolismo e para libertar as substâncias que a célula produz e que devem ser enviadas para o exterior (sejam elas produtos de excreção, das quais deve se libertar, ou secreções que a célula utiliza para várias funções relacionadas com o meio).

Principais características da membrana celular

A membrana celular é responsável pela manutenção de uma substancia do meio intracelular, que é diferente do meio extracelular e pela recepção de nutrientes e sinais químicos do meio extracelular. Para o funcionamento normal e regular das células, deve haver a seleção das substâncias que entram e o impedimento da entrada de partículas indesejáveis, ou ainda, a eliminação das que se encontram no citoplasma. Por ser o componente celular mais externo e possuir receptores específicos, a membrana tem a capacidade de reconhecer outras células e diversos tipos de moléculas, como hormônios.
As membranas celulares possuem mecanismos de adesão, de vedação do espaço intercelular e de comunicação entre as células. Os microvilos ou microvilosidades são muito freqüentes e aumentam a superfície celular.
Não confundir a membrana celular com a parede celular (das células vegetais, por exemplo), que tem uma função principalmente de proteção mecânica da célula. Devido à membrana citoplasmática não ser muito forte, as plantas possuem a parede celular, que é mais resistente.
A membrana celular é uma camada fina e altamente estruturada de moléculas de lípidos e proteínas, organizadas de forma a manter o potencial eléctrico da célula e a controlar o que entra e sai da célula (permeabilidade selectiva da membrana). Sua estrutura só vagamente pode ser verificada com um microscópio de transmissão electrônica. Muitas vezes, esta membrana contém proteínas receptoras de moléculas específicas, os Receptores de membrana, que servem para regular o comportamento da célula e, nos organismos multicelulares, a sua organização em tecidos (ou em colónias).
Por outro lado, a membrana celular não é, nem um corpo rígido, nem homogêneo – é muitas vezes descrita como um fluido bidimensional e tem a capacidade de mudar de forma e invaginar-se para o interior da célula, formando alguns dos seus organelos.
A matriz fosfolipídica da membrana foi pela primeira vez postulada em 1825 por Gorter e Grendal; no entanto, só em 1895, Charles Overton deu força a esta teoria, tendo observado que a membrana celular apenas deixava passar algumas substâncias, todas lipossolúveis.

Transporte através das membranas

Mesmo nas membranas não biológicas, como as de plástico ou celulose, há moléculas que as conseguem atravessar, em determinadas condições. Dependendo das propriedades da membrana e das moléculas (ou átomos ou íons) em presença, o transporte através das membranas classifica-se em:
  • Transporte passivo – quando não envolve o consumo de energia do sistema, sendo utilizada apenas a energia cinética das moléculas; a movimentação dá-se a favor do gradiente de concentração (do meio hipertónico para o meio hipotónico).
  • Transporte ativo – quando o transporte das moléculas envolve a utilização de energia pelo sistema; no caso da célula viva, a energia utilizada é na forma de Adenosina tri-fosfato (ATP); a movimentação das substâncias dá-se contra o gradiente de concentração, ou seja, do meio hipotónico para o hipertónico.
O transporte através das membranas pode ainda ser classificado em mediado, envolve permeases (transporte ativo e difusão facilitada), e não-mediado (difusão directa).

Transporte passivo

O interior das células – o citoplasma – é basicamente uma solução aquosa de sais e substâncias orgânicas. O transporte passivo de substâncias na célula pode ser realizado através de difusão ou por osmose.
A difusão se dá quando a concentração interna de certa substância é menor que a externa, e as particulas tendem a entrar na célula. Quando a concentração interna é maior, as substâncias tendem a sair. A difusão pode ser auxiliada por enzimas permeases sendo classificada Difusão facilitada. Quando não há ação de enzimas, é chamada difusão simples
Quando a concentração externa de substâncias é maior que a interna, parte do líquido citoplasmático tende a sair fazendo com que a célula murche - plasmólise. Quando a concentração interna é maior, o líquido do meio externo tende a entrar na célula, dilatando-a - Turgência, entretanto existe ainda a situação em que a célula murcha e depois por motivos externos volta a obter sua quantidade normal de água,então esse fato é chamado de Deplasmolise, ou seja, uma plasmolise inversa. Neste caso, se a diferença de concentração for muito grande, pode acontecer que a célula estoure. As células que possuem vacúolos são mais resistentes à diferença de concentração, pois estas organelas, além de outras funções, agem retendo líquido.

Transporte ativo

O transporte ativo através da membrana celular é primariamente realizado pelas enzimas ATPases, como a importante bomba de sódio e potássio, que tem função de manter o potencial eletroquímico das células.
Muitas células possuem uma ATPase do cálcio que opera as concentrações intracelulares baixas de cálcio e controla a concentração normal (ou de reserva) deste importante mensageiro secundário. Uma outra enzima actua quando a concentração de cálcio sobe demasiadamente. Isto mostra que um íon pode ser transportado por diferentes enzimas, que não se encontram permanentemente ativas.
Há ainda dois processos em que, não apenas moléculas específicas, mas a própria estrutura da membrana celular é envolvida no transporte de matéria (principalmente de grandes moléculas) para dentro e para fora da célula:
  • endocitose – em que a membrana celular envolve partículas ou fluido do exterior - fagocitose ou pinocitose - e a transporta para dentro, na forma duma vesícula; e
  • exocitose – em que uma vesícula contendo material que deve ser expelido se une à membrana celular, que depois expele o seu conteúdo.

DNA E RNA

DNA e RNA 

 Substâncias químicas envolvidas na transmissão de caracteres hereditários e na produção de proteínas compostos que são o principal constituinte dos seres vivos. São ácidos nucléicos encontrados em todas as células e também são conhecidos em português pelas siglas ADN e ARN (ácido desoxirribonucléico e ácido ribonucléico). De acordo com a moderna Biologia , o DNA faz RNA, que faz proteína (embora existam exceções os retrovírus, como o vírus da Aids).


DNA O ácido desoxirribonucléico é uma molécula formada por duas cadeias na forma de uma dupla hélice. Essas cadeias são constituídas por um açúcar (desoxirribose), um grupo fosfato e uma base nitrogenada (T timina, A adenina, C citosina ou G guanina). A dupla hélice é um fator essencial na replicação do DNA durante a divisão celular cada hélice serve de molde para outra nova.
RNA O ácido ribonucléico (RNA) é uma molécula também formada por um açúcar (ribose), um grupo fosfato e uma base nitrogenada (U uracila, A adenina, C citosina ou G guanina). Um grupo reunindo um açúcar, um fosfato e uma base é um "nucleotídeo".
Código genético A informação contida no DNA, o código genético , está registrada na seqüência de suas bases na cadeia (timina sempre ligada à adenina, e citosina sempre com guanina). A seqüência indica uma outra seqüência, a de aminoácidos substâncias que constituem as proteínas. O DNA não é o fabricante direto das proteínas; para isso ele forma um tipo específico de RNA, o RNA mensageiro, no processo chamado transcrição. O código genético, na forma de unidades conhecidas como genes, está no DNA, no núcleo das células. Já a "fábrica" de proteínas fica no citoplasma celular em estruturas específicas, os ribossomos, para onde se dirige o RNA mensageiro. Na transcrição, apenas os genes relacionados à proteína que se quer produzir são copiados na forma de RNA mensageiro.
Cada grupo de três bases (ACC, GAG, CGU etc.) é chamado códon e é específico para um tipo de aminoácido. Um pedaço de ácido nucléico com cerca de mil nucleotídeos de comprimento pode, portanto, ser responsável pela síntese de uma proteína composta por centenas de aminoácidos. Nos ribossomos, o RNA mensageiro é por sua vez lido por moléculas de RNA de transferência, responsável pelo transporte dos aminoácidos até o local onde será montada a cadeia protéica. Essa produção de proteínas com base em um código é a base da Engenharia genética. 

Complexo de Golgi

Complexo de Golgi


Retículo endoplasmático e Aparelho de Golgi
Em biologia celular, o complexo de Golgi, aparelho de Golgi, dictiossoma, golgiossomo ou complexo golgiense é uma organela encontrada em quase todas as células eucarióticas. O nome provém de Camilo Golgi, que foi quem o identificou. É formado por sacos achatados e vesículas, sua função primordial é o processamento de proteínas ribossomaticas e a sua distribuição por entre essas vesículas. Funciona, portanto, como uma espécie de sistema central de distribuição na célula, atua como centro de armazenamento, transformação, empacotamento e remessa de substâncias na célula. É responsável também pela formação dos lisossomos, da lamela média dos vegetais e do acrossomo do espermatozoide, do glicocalix e está ligado à sintese de polissacarídeos. Acredita-se, ainda, que o complexo de Golgi seja responsável por alguns processos pós traducionais, tais como adicionar sinalizadores às proteínas, que as direcionam para os locais da célula onde actuarão.
A maior parte das vesículas transportadoras que saem do retículo endoplasmático, e em particular do retículo endoplasmático rugoso (RER), são transportadas até ao complexo de Golgi, onde são modificadas, ordenadas e enviadas na direcção dos seus destinos finais. O complexo de Golgi está presente na maior parte das células eucarióticas, mas tende a ser mais proeminente nas células de órgãos responsáveis pela secreção de certas substâncias, tais como: Pâncreas, Hipófise, Tireóide, etc.
 CELULA

A célula representa a menor porção de matéria viva. São as unidades estruturais e funcionais dos organismos vivos. A nível estrutural podem ser comparadas aos tijolos de uma casa, a nível funcional podem ser comparadas aos aparelhos e electrodomésticos que tornam uma casa habitável. Cada tijolo ou aparelho seria como uma célula. Alguns organismos, tais como as bactérias, são unicelulares (consistem em uma única célula). Outros organismos, tais como os seres humanos, são pluricelulares.
O corpo humano é constituído por 10 trilhões de células mais 90 trilhões de células de microrganismos que vivem em simbiose com o nosso organismo;um tamanho de célula típico é o de 10 µm; uma massa típica da célula é 1 nanograma.
Em 1837, antes de a teoria final da célula estar desenvolvida, um cientista tcheco de nome Jan Evangelista Purkyňe observou "pequenos grãos" ao olhar um tecido vegetal através de um microscópio.
A teoria da célula, desenvolvida primeiramente em 1839 por Matthias Jakob Schleiden e por Theodor Schwann, indica que todos os organismos são compostos de uma ou mais células. Todas as células vêm de células preexistentes. As funções vitais de um organismo ocorrem dentro das células, e todas elas contêm informação genética necessária para funções de regulamento da célula, e para transmitir a informação para a geração seguinte de células.

História

As células foram descobertas em 1665 pelo inglês Robert Hooke. Ao examinar em um microscópio rudimentar, uma fatia de cortiça, verificou que ela era constituída por cavidades poliédricas, às quais chamou de células. Na realidade Hooke observou blocos hexagonais que eram as paredes de células vegetais mortas.
Em 1838 Matthias Schleiden e Theodor Schwann, estabeleceram o que ficou conhecido como teoria celular: "todo o ser vivo é formado por células".
As células são envolvidas pela membrana celular e preenchidas com uma solução aquosa concentrada de substâncias químicas, o citoplasma em que se encontram dispersos organelos (por vezes escrito organelas, organóides, orgânulos ou organitos).
As formas mais simples de vida são organismos unicelulares que se propagam por cissiparidade. As células podem também constituir arranjos ordenados, os tecidos.

Estrutura

célula procarionte

CELULA VEGETAL
 
 CELULA ANIMAL
De acordo com a organização estrutural, as células são divididas em:
  • Células Procariontes
  • Células Eucariontes

Células Procariontes

As células procariontes ou procarióticas, também chamadas de protocélulas, são muito diferentes das eucariontes. A sua principal característica é a ausência da membrana carioteca individualizando o núcleo celular, pela ausência de alguns organelos e pelo pequeno tamanho que se acredita que se deve ao fato de não possuírem compartimentos membranosos originados por evaginação ou invaginação. Também possuem DNA na forma de um anel associado a proteínas básicas e não a histonas (como acontece nas células eucarióticas, nas quais o ADN se dispõe em filamentos espiralados e associados a histonas).
Estas células são desprovidas de mitocôndrias, plastídeos, complexo de Golgi, retículo endoplasmático e sobretudo cariomembrana o que faz com que o ADN fique disperso no citoplasma.
A este grupo pertencem seres pubianoses ou peuvicos:
  • Bactérias
  • Cianófitas (Cyanobacterias)
  • PPLO ("pleuro-pneumonia like organisms")

Células incompletas

As bactérias dos grupos das Rickettsias e das clamídias são muito pequenas, sendo denominadas células incompletas por não apresentarem capacidade de auto-duplicação independente da colaboração de outras células, isto é, só proliferarem no interior de outras células completas, sendo, portanto, parasitas intracelulares obrigatórios.
Diversas doenças de importância médica tem sido descritas para organismos destes grupos, incluindo algumas vinculadas aos psitacídeos (papagaios e outras aves, a psitacose) e carrapatos (a febre maculosa, causada pela Rickettsia rickettsii).
Estas bactérias são diferente dos vírus por apresentarem:
  • conjuntamente DNA e RNA (já foram encontrados vírus com DNA, adenovirus, e RNA, retrovírus, no entanto são raros os vírus que possuem DNA e RNA simultâneamente);
  • parte incompleta da "máquina" de síntese celular necessária para reproduzirem-se;
  • uma membrana celular semipermeável, através da qual realizam as trocas com o meio envolvente.

Células Eucariontes

As células eucariontes ou eucarióticas, também chamadas de eucélulas, são mais complexas que as procariontes. Possuem membrana nuclear individualizada e vários tipos de organelas. A maioria dos animais e plantas a que estamos habituados são dotados deste tipo de células.
É altamente provável que estas células tenham surgido por um processo de aperfeiçoamento contínuo das células procariontes, o que chamamos de Endossimbiose.
Não é possível avaliar com precisão quanto tempo a célula "primitiva" levou para sofrer aperfeiçoamentos na sua estrutura até originar o modelo que hoje se repete na imensa maioria das células, mas é provável que tenha demorado muitos milhões de anos. Acredita-se que a célula "primitiva" tivesse sido bem pequena e para que sua fisiologia estivesse melhor adequada à relação tamanho × funcionamento era necessário que crescesse.
Acredita-se que a membrana da célula "primitiva" tenha emitido internamente prolongamentos ou invaginações da sua superfície, os quais se multiplicaram, adquiriram complexidade crescente, conglomeraram-se ao redor do bloco inicial até o ponto de formarem a intrincada malha do retículo endoplasmático. Dali ela teria sofrido outros processos de dobramentos e originou outras estruturas intracelulares como o complexo de Golgi, vacúolos, lisossomos e outras.
Quanto aos cloroplastos (e outros plastídeos) e mitocôndrias, atualmente há uma corrente de cientistas que acreditam que a melhor teoria que explica a existência destes orgânulos é a Teoria da Endossimbiose, segundo a qual um ser com uma célula maior possuía dentro de sí uma célula menor mas com melhores características, fornecendo um refúgio à menor e esta a capacidade de fotossintetizar ou de sintetizar proteínas com interesse para a outra.
Nesse grupo encontram-se:
  • Células Vegetais (com cloroplastos e com parede celular; normalmente, apenas, um grande vacúolo central)
  • Células Animais (sem cloroplastos e sem parede celular; vários pequenos vacúolos)
Outros componentes celulares
  • Cílios e Flagelos
  • Cromossomo
  • Proteínas - 10%
  • ADN (DNA) - 0,4%
  • ARN (RNA) - 0,7%
  • Lípidos - 2%
  • Outros compostos orgânicos - 0,4 %
  • Outros compostos inorgânicos - 1,5%

BIOLOGIA CELULAR OU CITOLOGIA

CITOLOGIA
 

citologia é o ramo da biologia que estuda as células no que diz respeito à sua estrutura, suas funções e sua importância na complexidade dos seres vivos. É estudada em cursos da área de saúde e biológicas.
Com a invenção do Microscópio óptico foi possível observar estruturas nunca antes vistas pelo homem, as células. Essas estruturas foram mais bem estudadas com a utilização de técnicas de citoquímica e o auxílio fundamental do microscópio eletrônico.
A biologia celular concentra-se no entendimento do funcionamento dos vários sistemas celulares, o aprendizado de como estas células são reguladas e a compreensão do funcionamento de suas estruturas.
A biologia celular é um estudo detalhado dos componentes da célula. Estes componentes são de importância vital para a vida da célula e em geral para a vida dos seres vivos (os quais são formados por células). Os componentes que dão vida à célula compreendem: a membrana citoplasmática, o núcleo, as mitocôndrias, os retículos endoplasmáticos liso e rugoso, os lisossomos, o complexo de Golgi, nucléolo, peroxissomos, centríolos, citoesqueleto e cloroplastos e parede celular, sendo este último encontrado em bactérias, fungos e vegetais.
Com o advento da microscopia eletrônica, a qual propicia aumentos de 200.000 a 400.000 vezes com resolução de objetos tão pequenos quanto 1 ångstron (1å =10-4 µm), a visualização de estruturas celulares e também dos vírus puderam ser, então, desvendados pela ciência.

Fontes Alternativas de Energia

No Brasil a maior quantidade de energia elétrica produzida provém de usinas hidrelétricas (cerca de 95%). Em regiões rurais e mais distantes das hidrelétricas centrais, têm-se utilizado energia produzida em usinas termoelétricas e em pequena escala, a energia elétrica gerada da energia eólica.
Neste artigo vamos dar uma visão geral das fontes alternativas de energia elétrica: hídrica, térmica, nuclear, geotérmica, eólica, marés e fotovoltaica.

Energia hídrica

Nas usinas hidrelétricas, a energia elétrica tem como fonte principal a energia proveniente da queda de água represada a uma certa altura. A energia potencial que a água tem na parte alta da represa é transformada em energia cinética, que faz com que as pás da turbina girem, acionando o eixo do gerador, produzindo energia elétrica.
Utiliza-se a energia hídrica no Brasil em grande escala, devido aos grandes mananciais de água existentes.
Atualmente estão sendo discutidas fontes alternativas para a produção de energia elétrica, pois a falta de chuvas está causando um grande déficit na oferta de energia elétrica. A maior usina hidrelétrica do Brasil é a de Itaipu (Foz de Iguaçu) que tem capacidade de 12600 MW (fig.1).
Usina hidrelétrica de Itaipu, na fronteira do Brasil com o Paraguai
Usina hidrelétrica de Itaipu, na fronteira do Brasil com o Paraguai
Usina hidrelétrica de Itaipu, na fronteira do Brasil com o Paraguai

Energia térmica

Nas usinas termoelétricas a energia elétrica é obtida pela queima de combustíveis, como carvão, óleo, derivados do petróleo e, atualmente, também a cana de açúcar (biomassa).
A produção de energia elétrica é realizada através da queima do combustível que aquece a água, transformando-a em vapor. Este vapor é conduzido a alta pressão por uma tubulação e faz girar as pás da turbina, cujo eixo está acoplado ao gerador. Em seguida o vapor é resfriado retornando ao estado líquido e a água é reaproveitada, para novamente ser vaporizada.
Vários cuidados precisam ser tomados tais como: os gases provenientes da queima do combustível devem ser filtrados, evitando a poluição da atmosfera local; a água aquecida precisa ser resfriada ao ser devolvida para os rios porque várias espécies aquáticas não resistem a altas temperaturas.
No Brasil este é o segundo tipo de fonte de energia elétrica que está sendo utilizado, e agora, com a crise que estamos vivendo, é a que mais tende a se expandir.

Energia nuclear

Este tipo de energia é obtido a partir da fissão do núcleo do átomo de urânio enriquecido, liberando uma grande quantidade de energia.

Urânio enriquecido - o que é isto?

Sabemos que o átomo é constituído de um núcleo onde estão situados dois tipos de partículas: os prótons que possuem cargas positivas e os nêutrons que não possuem carga.
Em torno do núcleo, há uma região denominada eletrosfera, onde se encontram os elétrons que têm cargas negativas. Átomos do mesmo elemento químico, que possuem o mesmo número de prótons e diferentes número de nêutrons são chamados isótopos. O urânio possui dois isótopos: 235U e 238U. O 235U é o único capaz de sofrer fissão. Na natureza só é possível encontrar 0,7 % deste tipo de isótropo. Para ser usado como combustível em uma usina, é necessário enriquecer o urânio natural. Um dos métodos é “filtrar” o urânio através de membranas muito finas. O 235U é mais leve e atravessa a membrana primeiro do que o 238U. Esta operação tem que ser repetida várias vezes e é um processo muito caro e complexo. Poucos países possuem esta tecnologia para escala industrial.
Diagrama do reator de uma Usina Nuclear
Diagrama do reator de uma Usina Nuclear
 
O urânio é colocado em cilindros metálicos no núcleo do reator que é constituído de um material moderador (geralmente grafite) para diminuir a velocidade dos nêutrons emitidos pelo urânio em desintegração, permitindo as reações em cadeia. O resfriamento do reator do núcleo é realizado através de líquido ou gás que circula através de tubos, pelo seu interior. Este calor retirado é transferido para uma segunda tubulação onde circula água. Por aquecimento esta água se transforma em vapor (a temperatura chega a 320oC) que vai movimentar as pás das turbinas que movimentarão o gerador, produzindo eletricidade (fig. 2).
Depois este vapor é liquefeito e reconduzido para a tubulação, onde é novamente aquecido e vaporizado.
No Brasil, está funcionado a Usina Nuclear Angra 2 sendo que a produção de energia elétrica é em pequena quantidade que não dá para abastecer toda a cidade do Rio de Janeiro.
No âmbito governamental está em discussão a construção da Usina Nuclear Angra 3 por causa do déficit de energia no país.
Os Estados Unidos da América lideram a produção de energia nuclear e nos países França, Suécia, Finlândia e Bélgica 50 % da energia elétrica consumida, provém de usinas nucleares.

Energia geotérmica

Energia geotérmica é a energia produzida de rochas derretidas no subsolo (magma) que aquecem a água no subsolo.
Na Islândia, que é um país localizado muito ao Norte, próximo do Círculo Polar Ártico, com vulcanismo intenso, onde a água quente e o vapor afloram à superfície (gêiseres- fig. 3) ou se encontram em pequena profundidade, tem uma grande quantidade de energia geotérmica aproveitável e a energia elétrica é gerada a partir desta.
Figura 3 -Geiseres
Geiseres
 
As usinas elétricas aproveitam esta energia para produzir água quente e vapor. O vapor aciona as turbinas que geram quase 3 000 000 joules de energia elétrica por segundo e a água quente percorre tubulações até chegar às casas.
Nos Estados Unidos da América há usinas deste tipo na Califórnia e em Nevada. Em El Salvador, 30% da energia elétrica consumida provém da energia geotérmica.

Energia eólica

Os moinhos de ventos são velhos conhecidos nossos, e usam a energia dos ventos, isto é, eólica, não para gerar eletricidade, mas para realizar trabalho, como bombear água e moer grãos. Na Pérsia, no século V, já eram utilizados moinhos de vento para bombear água para irrigação.
A energia eólica é produzida pela transformação da energia cinética dos ventos em energia elétrica. A conversão de energia é realizada através de um aerogerador que consiste num gerador elétrico acoplado a um eixo que gira através da incidência do vento nas pás da turbina.
A turbina eólica horizontal (a vertical não é mais usada), é formada essencialmente por um conjunto de duas ou três pás, com perfis aerodinâmicos eficientes, impulsionadas por forças predominantemente de sustentação, acionando geradores que operam a velocidade variável, para garantir uma alta eficiência de conversão (fig.4).
A instalação de turbinas eólicas tem interesse em locais em que a velocidade média anual dos ventos seja superior a 3,6 m/s.
Existem atualmente, mais de 20 000 turbinas eólicas de grande porte em operação no mundo (principalmente no Estados Unidos). Na Europa, espera-se gerar 10 % da energia elétrica a partir da eólica, até o ano de 2030.
Vista de campo com equipamentos modernos para aproveitamento da energia dos ventos (eólica).
Vista de campo com equipamentos modernos para aproveitamento da energia dos ventos (eólica).
O Brasil produz e exporta equipamentos para usinas eólicas, mas elas ainda são pouco usadas. Aqui se destacam as Usinas do Camelinho (1MW, em MG), de Mucuripe (1,2MW) e da Prainha (10MW) no Ceará, e a de Fernando de Noronha em Pernambuco.
Energia das marés A energia das marés é obtida de modo semelhante ao da energia hidrelétrica.
Constrói-se uma barragem, formando-se um reservatório junto ao mar. Quando a maré é alta, a água enche o reservatório, passando através da turbina e produzindo energia elétrica, e na maré baixa o reservatório é esvaziado e água que sai do reservatório, passa novamente através da turbina, em sentido contrário, produzindo energia elétrica (fig. 5). Este tipo de fonte é também usado no Japão e Inglaterra.
No Brasil temos grande amplitude de marés, por exemplo, em São Luís, na Baia de São Marcos (6,8m), mas a topografia do litoral inviabiliza economicamente a construção de reservatórios.
Caixa de concreto por onde, no sobe e desce das marés, passa a água do mar cuja energia é aproveitada na geração de eletricidade.
Caixa de concreto por onde, no sobe e desce das marés, passa a água do mar cuja energia é aproveitada na geração de eletricidade.
  

Energia fotovoltaica

Painel solar fotovoltaico que usa energia da luz solar para sustentar telefone celular público em local isolado na Austrália.
Painel solar fotovoltaico que usa energia da luz solar para sustentar telefone celular público em local isolado na Austrália.
A energia fotovoltaica é fornecida de painéis contendo células fotovoltaicas ou solares que sob a incidência do sol geram energia elétrica. A energia gerada pelos painéis é armazenada em bancos de bateria, para que seja usada em período de baixa radiação e durante a noite (fig. 6).
A conversão direta de energia solar em energia elétrica é realizada nas células solares através do efeito fotovoltaico, que consiste na geração de uma diferença de potencial elétrico através da radiação. O efeito fotovoltaico ocorre quando fótons (energia que o sol carrega) incidem sobre átomos (no caso átomos de silício), provocando a emissão de elétrons, gerando corrente elétrica. Este processo não depende da quantidade de calor, pelo contrário, o rendimento da célula solar cai quando sua temperatura aumenta.
O uso de painéis fotovoltaicos para conversão de energia solar em elétrica é viável para pequenas instalações, em regiões remotas ou de difícil acesso. É muito utilizada para a alimentação de dispositivos eletrônicos existentes em foguetes, satélites e astronaves.
O sistema de co-geração fotovoltaica também é uma solução; uma fonte de energia fotovoltaica é conectada em paralelo com uma fonte local de eletricidade. Este sistema de co-geração voltaica está sendo implantado na Holanda em um complexo residencial de 5000 casas, sendo de 1 MW a capacidade de geração de energia fotovoltaica. Os Estados Unidos, Japão e Alemanha têm indicativos em promover a utilização de energia fotovoltaica em centros urbanos. Na Cidade Universitária - USP - São Paulo, há um prédio que utiliza este tipo de fonte de energia elétrica.
No Brasil já é usado, em uma escala significativa, o coletor solar que utiliza a energia solar para aquecer a água e não para gerar energia elétrica.
Fonte: fisica.cdcc.sc.usp.br
Fontes Alternativas de Energia

uma meta para o futuro

Na maioria dos países do mundo, o modelo energético, é baseado no consumo de combustíveis fósseis, ou seja, petróleo, gás natural e carvão.
O principal problema deste modelo, é que os recursos não são renováveis, além de ocasionarem muitos danos ao meio ambiente, como a poluição atmosférica, causadora do efeito estufa.
A dependência de consumo de combustíveis fósseis para a produção de energia certamente afeta a vida na terra e compromete a qualidade ambiental, e continuará sendo desse jeito. Sendo assim, é necessário que o trabalho científico e tecnológico do mundo atual sejam dirigidos para produzir outros tipos de energia (que sejam menos poluidoras e que causem menos impactos ambientais, diferente do petróleo), as chamadas energias alternativas.
No Brasil (diferentemente da maioria dos países), a produção de energia é feita principalmente através de hidrelétricas, ou seja, de energia hidráulica pois o país dispõe de grandes bacias hidrográficas. A energia produzida através de hidrelétricas é considerada limpa e renovável, ao contrário daquelas derivadas dos combustíveis de petróleo.
Sabendo do que foi falado nos parágrafos acima, Quais são os diferentes tipos de energia? Como funcionam? Qual é a próxima fonte de energia quando se acabar o petróleo? Qual é a grande luta para existirem as energias alternativas?
A energia alternativa (ao petróleo) é uma forma de produzir energia elétrica, causando menos problemas à sociedade atual, ao meio ambiente e, menos poluição. Os principais tipos de energia alternativa que existem, são:

Energia Solar: Abundante, mas cara

A energia solar, é uma energia abundante, porém, é muito difícil de usá-la diretamente. Ela é limpa e renovável, e existem três maneiras de fazer o seu uso:
Células fotovoltáicas, que são consideradas as que mais prometem da energia solar. A luz solar é diretamente transformada em energia, através de placas que viram baterias.
Os captadores planos, ou, coletores térmicos, que, num lugar fechado, aquecem a água, que com pressão do vapor, movem turbinas ligadas aos geradores.
Também chamados de captadores de energia, os espelhos côncavos refletores, mantém a energia do sol que aquecem a água com mais de 100° C em tubos, que com a pressão, movimentam turbinas ligadas ao gerador. O único e pequeno problema dos espelhos côncavos, é que eles têm que acompanha diretamente os raios do sol, para fazer um aproveitamento melhor.
Como à noite e em dias chuvosos não tem sol, a desvantagem da energia solar, é que nesses casos ela não pode ser aproveitada, por isso que é melhor produzir energia solar em lugares secos e ensolarados.
Um exemplo do aproveitamento dessa energia, é em Freiburg, no sudeste da Alemanha. A chamada “cidade do sol”, lá existe o bairro que foi o primeiro a possuir casas abastecidas com energia solar. As casas são construídas com um isolamento térmico para a energia ser “guardada” dentro. Quando as casas são abastecidas com mais energia do que necessário, os donos vendem o restante de energia para companhias de eletricidade da região.
Na cidade , há casas que giram de acordo com o movimento do sol. A igreja e o estádio de futebol, são abastecidos com energia solar. Com o uso de energia solar, a cidade já deixou de usar mais de 200 toneladas de gás carbônico por ano.

Energia Eólica: limpa, mas demorada

É a energia mais limpa que existe. A chamada energia eólica, que também pode ser denominada de energia dos ventos, é uma energia de fonte renovável e limpa, porque não se acaba (é possível utilizá-la mais que uma vez), e porque não polui nada. O vento (fonte da energia eólica), faz girar hélices que movimentam turbinas, que produzem energia. O único lado ruim que a energia eólica possui é que como depende do vento, que é um fenômeno natural, ele faz interrupções temporárias, a maioria dos lugares não tem vento o tempo todo, e não é toda hora que se produz energia. O outro lado ruim, é que o vento não é tão forte como outras fontes, fazendo o processo de produção ficar mais lento.
Não são muitos os lugares que existem condições favoráveis ao aproveitamento da energia eólica, ou seja, não é todo lugar que apresentam ventos constantes e intensos. Os lugares que tem as melhores condições para atividade, são: norte da Europa, norte da África e a costa oeste dos Estados Unidos.
Na maioria dos casos essa forma de energia é usada para complementar as usinas hidroelétricas e termoelétricas.
Um exemplo para mostrar como a energia dos ventos é econômica, é que no Estado da Califórnia, que com o aproveitamento dessa energia, economizou mais de 10 milhões de barris de petróleo.

Energia Nuclear, eficaz, mas perigosa

A energia Nuclear, que pode também ser chamada de energia atômica, é a energia que fica dentro do núcleo do átomo, que pode acontecer pela ruptura ou pela fissão do átomo.
Como a energia atômica não emite gases ela é considerada uma energia limpa, mas tem um lado ruim, gera lixo atômico, ou resíduos radioativos que são muitos perigosos aos seres humanos pois causam mortes e doenças.
Por isso, quando produzem a energia nuclear, é preciso um desenvolvimento muito seguro, que isolem o material radioativo durante um bom tempo.
Nas usinas atômicas, que também podem ser chamadas de termonucleares, em vez de ser usada a queima de combustíveis, a energia nuclear gera um vapor, que sob pressão, faz girar turbinas que acionam geradores elétricos.
A energia atômica é usada em muitos países e veja a porcentagem de cada um: EUA, 30,7%; França, 15,5%;Japão, 12,5%; Alemanha, 6,7%; Federação Russa, 4,8%. No Brasil, apesar de usar muito a energia Hidráulica, a energia nuclear também tem uma pequena porcentagem de 2,6%.

Energia da Biomassa: uma energia vegetal

Para produzir a energia da biomassa, é preciso um grande percurso. Um exemplo da biomassa, é a lenha que se queima nas lareiras. Mas hoje, quando se fala em energia biomassa, quer dizer que estão falando de etanol, biogás, e biodiesel, esses combustíveis, que tem uma queima tão fácil, como a gasolina e outros derivados do petróleo, mas a energia da biomassa, é derivada de plantas cultivadas, portanto, são mais ecológicas.
Para ter uma idéia de como a energia da biomassa é eficiente, o etanol, extraído do milho, é usado junto com a gasolina nos Estados Unidos; e também, é produzido da cana de açúcar, o etanol responde metade dos combustíveis de carro produzido no Brasil. Em vários países, mas principalmente nos Estados Unidos, o biodiesel de origem vegetal é usado junto ou puro ao óleo diesel comum. Segundo o diretor do centro nacional de bioenergia: “Os biocombustíveis são a opção mais fácil de ampliar-se o atual leque de combustíveis”
O único problema da biomassa é que por conta da fotossíntese (o processo pela qual as plantas captam energia solar) é bem menos eficiente por metro quadrado do que os painéis solares, por causa desse problema, é que para ter uma boa quantidade de captação de energia por meio de plantas, é preciso uma quantidade de terra bem mais extensa. Estima-se de que para movimentar todos os meios de transportes do planeta só usando biocombustíveis, as terras usadas para agricultura teriam que ser duas vezes maiores do que já são.
Para ser mais eficaz, deixando mais rápidas as colheitas, e deixando ser mais captadores de energia, cientistas estão fazendo pesquisas. Atualmente, os combustíveis extraídos da biomassa são vegetais, como o amido, o açúcar, e óleos, mas alguns cientistas, estão tentando deixar esses combustíveis líquidos. Outros estão visando safras que gerem melhores combustíveis.
E esse é o grande problema da energia da biomassa, mas para Michel Pacheco, “Estamos diante de muitas opções, e cada uma tem por trás um grupo de interesse. Para ser bastante sincero, um dos maiores problemas com a biomassa é o fato de existirem tantas alternativas“

Energia Hidráulica

A energia hidráulica pode ser considerada alternativa em relação aos combustíveis fósseis, porem no Brasil ela é utilizada rotineiramente.
Nas usinas hidrelétricas, a pressão das águas movimentam turbinas que estão ligadas aos geradores de corrente elétrica. Na maioria das vezes são construídas barragens, que servem para represar os rios. Com muita pressão, a água acumulada é liberada, e as turbinas giram.
A energia hidráulica, tem muitas vantagens, porque é uma fonte limpa, não causa grandes impactos ambientais globais, é renovável e é muito barata comparada com as outras fontes.
Também existem as desvantagens, que são: inundação de áreas habitadas causando deslocamentos de populações e destruição da flora e fauna.
De toda energia gerada no mundo, cerca de 15% é de energia hidráulica, e só no Brasil, essa quantidade, é de 90%.

Energia Geotérmica

A energia geotérmica é gerada pelo calor das rochas do subsolo. No subsolo as águas dos lençóis freáticos são aquecidas, e então, são utilizadas para a produção energia.
A extração dessa energia só é possível acontecer em poucos lugares. Alem disso, é muito caro perfurar a terra para chegar nas rochas aquecidas.
O fato de que só existir essa energia perto de vulcões, muito poucos países geram essa energia, e esses paises são: Nicarágua, Quênia, El salvador, México, Chile, Japão, e França. Sendo assim o uso deste tipo de energia é de difícil utilização na grande maioria dos países.

Energia térmica dos oceanos

Graças à diferença de temperatura das águas profundas e águas que ficam na superfície, a água marinha pode ser usada para fazer um armazenamento de energia solar, e geradora de energia elétrica.
Em usinas que fazem esse “sistema”, a diferença de temperatura faz um movimento em tubos circulares. Isso ocorre em lugares fechados, conectados a turbinas que estão ligadas em geradores, produzindo energia elétrica. Uma vantagem dessa energia é que elas são renováveis, e uma desvantagem é que o custo é muito alto.
O primeiro lugar que fizeram o uso desse tipo de energia, foi nos Estados Unidos em 1979, e estão produzindo energia, até hoje.
Pesquisas revelam através de estimativas, que de toda a energia gerada no planeta, 80% são de combustíveis fósseis, como o petróleo, o carvão e o gás natural. Nos próximos 100 anos, uma coisa que é muito provável, é que com o aumento da população, paralelamente, aumentará o uso de combustíveis fósseis. E uma coisa que não é nada provável, é que essa grande população (que na época estará maior) faça o uso de energia alternativa. Para o professor de engenharia, Martin Hoffer, o esforço de fazer as pessoas deixarem de usar o petróleo, e começarem a usar energia alternativa, é maior do que acabar com terrorismo: “O terrorismo não ameaça viabilidade do nosso modo de vida baseado nos avanços tecnológicos, mas a energia, é um fator crucial”. Um exemplo de como existem energias alternativas que “adiantam” e são “ecológicas”, é que se se nos trocássemos uma lâmpada incandescente por uma fluorescente, nos estaríamos economizando 225 quilos de carvão, alem de deixar de causar poluição.
Os grandes problemas que parte da sociedade luta para ter a energia alternativa são os políticos e as empresas transnacionais (como a Shell, Texaco, Esso, etc.). Como a nossa sociedade é capitalista, grande parte dela não se preocupa nada em relação às conseqüências, querendo cada vez mais construir usinas poluidoras, só pensando no lucro. Poderíamos usar outras fontes menos poluentes, mas por causa do capitalismo, temos um monopólio do uso de energias mais poluidoras. E o que Martin Hoffer levanta é que se a sociedade capitalista não ajudar, podemos ser condenados a depender só dos combustíveis fósseis, cada vez mais poluentes, à medida que diminuem as reservas petroleiras e de gás, com conseqüência catastrófica no planeta: “se não tivemos uma política energética pró-ativa, acabaremos simplesmente usando o carvão, depois o xisto, e em seguida a areia de alcatrão, sempre com um retorno cada vez menor, até que nossa civilização entre em colapso. Mas tal declínio não é inevitável. Ainda temos a possibilidade de escolher.”
Sabendo que futuramente aumentará o número de pessoas, aumentando junto o uso de combustíveis fósseis, algum dia, as grandes reservas petroleiras acabarão, então, pesquisadores trabalham para identificar o próximo grande combustível que abastecerá esse gigantesco planeta. Para alguns especialistas, “não há nenhuma solução milagrosa”, para outros, aqueles mais insistentes, pensam que existem energias infinitas no espaço, mas que para fazer na prática é impossível.
A vontade de carros movidos a hidrogênio, pode dar uma impressão equivocada, porque hidrogênio não é fonte de energia. Para ele se tornar útil, tem que ser isolado e isso requer mais energia do que proporciona. Atualmente o único jeito de produzir energia com hidrogênio, é com combustíveis fosseis, que é um jeito poluidor de fazer, mas estão pensando em um jeito limpo de sua produção: O hidrogênio seria produzido de formas de energias que não liberam poluição (dióxido de carbono) o que precisaria de um uso grande de energia eólica, nuclear e solar. Nos Estados Unidos, uma coisa muito estudada pelo governo, é que poderíamos produzir energia com hidrogênio, usando as grandes reservas de carvão do paÍs, mas armazenando no subsolo o dióxido de carbono.
Isso que nós acabamos de ver sobre o hidrogênio é um belo exemplo de que nós, seres humanos, somos muitos capazes de poder conciliar um desenvolvimento limpo, descobrindo coisas novas, e ao mesmo tempo, preservando o planeta.

Produção de energia no brasil

Onde e como as energias estão sendo produzidas no Brasil.

Hidráulicas(Produzidas em Usinas Hidrelétricas) - 37%

Derivados do PetróleoGás Engarrafado (GLP)GasolinaQuerozeneÓleo DieselÓleo Combustível -
32%

Carvão Vegetal e Lenha - 9%

Bagaço de Cana - 7%

Álcool - 4%

Carvão Mineral - 3%

Gás Natural - 2%

Outras Fontes - 6%

Ainda há lugares no mundo que dependem quase que exclusivamente da energia produzida pela queima do carvão mineral.
A ENERGIA é um dos insumos básicos que é de fundamental importância para o desenvolvimento e a autosuficiência econômica de uma nação. Uma nação que não tenha a produção própria de energia não é uma nação independente. Uma nação que necessite importar petróleo é uma nação dependente.e, de todas as formas de energia, a eletricidade é a energia mais limpa, barata, não polui o meio ambiente, não deixa nenhum tipo de resíduo além de ser a de mais fácil controle.

ENERGIA HIDRELÉTRICA

 ENERGIA HIDRELETRICA
Itaipu, a maior hidrelétrica do mundo

A energia hidrelétrica é a obtenção de energia elétrica através do aproveitamento do potencial hidráulico de um rio. Para que esse processo seja realizado é necessária a construção de usinas em rios que possuam elevado volume de água e que apresentem desníveis em seu curso.

A força da água em movimento é conhecida como energia potencial, essa água passa por tubulações da usina com muita força e velocidade, realizando a movimentação das turbinas. Nesse
processo, ocorre a transformação de energia potencial (energia da água) em energia mecânica (movimento das turbinas). As turbinas em movimento estão conectadas a um gerador, que é responsável pela transformação da energia mecânica em energia elétrica.

Normalmente as usinas hidrelétricas são construídas em locais distantes dos centros consumidores, esse fato eleva os valores do transporte de energia, que é transmitida por fios até as cidades.


A eficiência energética das hidrelétricas é muito eficaz, em torno de 95%. O investimento inicial e os custos de manutenção são elevados, porém, o custo do combustível (água) é nulo.

Itaipu, a maior hidrelétrica do mundo
Atualmente, as usinas hidrelétricas são responsáveis por aproximadamente 18% da produção de energia elétrica no mundo. Esses dados só não são maiores pelo fato de poucos países apresentarem as condições naturais para a instalação de usinas hidrelétricas. As nações que possuem grande potencial hidráulico são os Estados Unidos, Canadá, Brasil, Rússia e China. No Brasil, mais de 95% da energia elétrica produzida é proveniente de usinas hidrelétricas.

Apesar de ser uma fonte de energia renovável e não emitir poluentes, a energia hidrelétrica não está isenta de impactos ambientais e sociais. A inundação de áreas para a construção de barragens gera problemas de realocação das populações ribeirinhas, comunidades indígenas e pequenos agricultores. Os principais impactos ambientais ocasionados pelo represamento da água para a formação de imensos lagos artificiais são: destruição de extensas áreas de vegetação natural, matas ciliares, o desmoronamento das margens, o assoreamento do leito dos rios, prejuízos à fauna e à flora locais, alterações no regime hidráulico dos rios, possibilidades da transmissão de doenças, como esquistossomose e malária, extinção de algumas espécies de peixes.


 

ENERGIA SOLAR

Energia solar



É a designação dada a qualquer tipo de captação de energia luminosa (e, em certo sentido, da energia térmica) proveniente do sol, e posterior transformação dessa energia captada em alguma forma utilizável pelo homem, seja directamente para aquecimento de água ou ainda como energia eléctrica ou mecânica.
No seu movimento de translação ao redor do Sol, a Terra recebe 1 410 W/m² de energia, medição feita numa superfície normal (em ângulo reto) com o Sol. Disso, aproximadamente 19% é absorvido pela atmosfera e 35% é reflectido pelas nuvens. Ao passar pela atmosfera terrestre, a maior parte da energia solar está na forma de luz visível e luz ultravioleta.
As plantas utilizam diretamente essa energia no processo de fotossíntese. Nós usamos essa energia quando queimamos lenha ou combustíveis minerais. Existem técnicas experimentais para criar combustível a partir da absorção da luz solar em uma reação química de modo similar à fotossíntese vegetal - mas sem a presença destes organismos.
A radiação solar, juntamente com outros recursos secundários de alimentação, tal como a energia eólica e das ondas, hidro-electricidade e biomassa, são responsáveis por grande parte da energia renovável disponível na terra. Apenas uma minúscula fracção da energia solar disponível é utilizada.

Tipos de energia solar

Os métodos de captura da energia solar classificam-se em diretos ou indiretos:
  • Direto significa que há apenas uma transformação para fazer da energia solar um tipo de energia utilizável pelo homem. Exemplos:
    • A energia solar atinge uma célula fotovoltaica criando eletricidade. (A conversão a partir de células fotovoltaicas é classificada como direta, apesar de que a energia elétrica gerada precisará de nova conversão - em energia luminosa ou mecânica, por exemplo - para se fazer útil.)
    • A energia solar atinge uma superfície escura e é transformada em calor, que aquecerá uma quantidade de água, por exemplo - esse princípio é muito utilizado em aquecedores solares.
  • Indireto significa que precisará haver mais de uma transformação para que surja energia utilizável. Exemplo: Sistemas que controlam automaticamente cortinas, de acordo com a disponibilidade de luz Sol. do
Também se classificam em passivos e ativos:
  • Sistemas passivos são geralmente diretos, apesar de envolverem (algumas vezes) fluxos em convecção, que é tecnicamente uma conversão de calor em energia mecânica.
  • Sistemas ativos são sistemas que apelam ao auxílio de dispositivos elétricos, mecânicos ou químicos para aumentar a efetividade da coleta. Sistemas indiretos são quase sempre também ativos.

Vantagens e desvantagens da energia solar

Vantagens
  • A energia solar não polui durante seu uso. A poluição decorrente da fabricação dos equipamentos necessários para a construção dos painéis solares é totalmente controlável utilizando as formas de controles existentes atualmente.
  • As centrais necessitam de manutenção mínima.
  • Os painéis solares são a cada dia mais potentes ao mesmo tempo que seu custo vem decaindo. Isso torna cada vez mais a energia solar uma solução economicamente viável.
  • A energia solar é excelente em lugares remotos ou de difícil acesso, pois sua instalação em pequena escala não obriga a enormes investimentos em linhas de transmissão.
  • Em países tropicais, como o Brasil, a utilização da energia solar é viável em praticamente todo o território, e, em locais longe dos centros de produção energética, sua utilização ajuda a diminuir a demanda energética nestes e consequentemente a perda de energia que ocorreria na transmissão.
Desvantagens
  • Um painel solar consome uma quantidade enorme de energia para ser fabricado. A energia para a fabricação de um painel solar pode ser maior do que a energia gerada por ele.
  • Os preços são muito elevados em relação aos outros meios de energia.
  • Existe variação nas quantidades produzidas de acordo com a situação atmosférica (chuvas, neve), além de que durante a noite não existe produção alguma, o que obriga a que existam meios de armazenamento da energia produzida durante o dia em locais onde os painéis solares não estejam ligados à rede de transmissão de energia.
  • Locais em latitudes médias e altas (Ex: Finlândia, Islândia, Nova Zelândia e Sul da Argentina e Chile) sofrem quedas bruscas de produção durante os meses de inverno devido à menor disponibilidade diária de energia solar. Locais com frequente cobertura de nuvens (Curitiba, Londres), tendem a ter variações diárias de produção de acordo com o grau de nebulosidade.
  • As formas de armazenamento da energia solar são pouco eficientes quando comparadas, por exemplo, aos combustíveis fósseis (carvão, petróleo e gás), a energia hidroelétrica (água) e a biomassa (bagaço da cana ou bagaço da laranja).
À semelhança de outros países do mundo, em Portugal desde Abril de 2008 um particular pode produzir e vender energia elétrica à rede elétrica nacional, desde que produzida a partir de fontes renováveis. Um sistema de microprodução ocupa cerca de 30 metros quadrados e permite ao particular receber perto de 4 mil euros ano.

Energia solar no mundo

Em 2004 a capacidade instalada mundial de energia solar era de 2,6 GW, cerca de 18% da capacidade instalada de Itaipu. Os principais países produtores, curiosamente, estão situados em latitudes médias e altas. O maior produtor mundial era o Japão (com 1,13 GW instalados), seguido da Alemanha (com 794 MWp) e Estados Unidos (365 MW)
Entrou em funcionamento em 27 de Março de 2007 a Central Solar Fotovoltaica de Serpa (CSFS), a maior unidade do gênero do Mundo. Fica situada na freguesia de Brinches, Alentejo, Portugal, numa das áreas de maior exposição solar da Europa. Tem capacidade instalada de 11 MW, suficiente para abastecer cerca de oito mil habitações.
Entretanto está projetada e já em fase de construção outra central com cerca de seis vezes a capacidade de produção desta, também no Alentejo, em Amareleja, conselho de Moura.
Muito mais ambicioso é o projeto australiano de uma central de 154 MW, capaz de satisfazer o consumo de 45 000 casas. Esta se situará em Victoria e prevê-se que entre em funcionamento em 2013, com o primeiro estágio pronto em 2010. A redução de emissão de gases de estufa conseguida por esta fonte de energia limpa será de 400 000 toneladas por ano.

Evolução da energia solar fotovoltaica

A primeira geração fotovoltaica consiste numa camada única e de grande superfície p-n díodo de junção, capaz de gerar energia elétrica utilizável a partir de fontes de luz com os comprimentos de onda da luz solar. Estas células são normalmente feitas utilizando placas de silício. A primeira geração de células constituem a tecnologia dominante na sua produção comercial, representando mais de 86% do mercado.
A segunda geração de materiais fotovoltaicos está baseada no uso de películas finas de depósitos de semicondutores. A vantagem de utilizar estas películas é a de reduzir a quantidade de materiais necessários para as produzir, bem como de custos. Atualmente (2006), existem diferentes tecnologias e materiais semicondutores em investigação ou em produção de massa, como o silício amorfo, silício poli-cristalino ou micro-cristalino, telúrico de cádmio, copper indium selenide/sulfide. Tipicamente, as eficiências das células solares de películas são baixas quando comparadas com as de silício compacto, mas os custos de manufatura são também mais baixos, pelo que se pode atingir um preço mais reduzido por watt. Outra vantagem da reduzida massa é o menor suporte que é necessário quando se colocam os painéis nos telhados e permite arrumá-los e dispô-los em materiais flexíveis, como os têxteis.
A terceira geração fotovoltaica é muito diferente das duas anteriores, definida por utilizar semicondutores que dependam da junção p-n para separar partículas carregadas por fotogestão. Estes novos dispositivos incluem células fotoelectroquímicas e células de nanocristais.

sábado, 28 de agosto de 2010

Fonte de energia

diferentes tipos de energia

As fontes de energia são extremamente importantes nas atividades humanas, pois originam combustíveis e eletricidade que servem para iluminar, movimentar máquinas, caminhões entre outras aplicações.

As energias facilitam o trabalho do homem que em outras circunstâncias teria uma grande dificuldade, utiliza-se a energia para levantar peso, apertar parafuso, mover veículos, ferver água, etc.

No Brasil as principais energias utilizadas são: Petróleo, hidrelétrica, carvão mineral e biocombustíveis.

Petróleo: a partir desse minério fóssil são processados vários subprodutos utilizados como fonte de energia como a gasolina, óleo diesel, querosene, além de gerar eletricidade nas usinas termoelétricas.

Energia hidrelétrica: produz energia elétrica em usinas hidrelétricas, gerada a partir da movimentação de turbinas impulsionadas por água de rios acumulados em barragens.

Carvão Mineral: esse minério oferece calor para os grandes fornos contidos nas indústrias siderúrgicas e contribui para geração de eletricidade nas usinas termelétricas.

Biocombustíveis: correspondem, por exemplo, ao álcool e o biodiesel, sendo o primeiro um dos principais, seu uso é bastante difundido no Brasil como combustível em veículos automotores, utilização iniciada na década de 70.

Outras não citadas fazem parte de fontes de energia, o gás natural, energia nuclear, xisto betuminoso, lenha, carvão vegetal e energia solar.


Os seres humanos, para o desenvolvimento de suas atividades, necessitam efetivamente dos recursos naturais, as fontes energéticas não são diferentes, dessa forma elas podem ser classificadas em dois tipos: fontes renováveis e não-renováveis.

A primeira corresponde a todo recurso que tem a capacidade de se refazer ou não é limitada, nessas destacam os biocombustíveis, hidrelétricas, energia solar, eólica entre outras. No entanto, esses tipos de fontes de energia não são isentos de provocar impactos na natureza, os biocombustíveis produzem devastação ambiental no desenvolvimento de culturas que servem de matérias-primas tais como a cana-de-açúcar, eucalipto, mamona entre outros, para o cultivo dessas são necessárias imensas propriedades rurais, denominadas de monoculturas, essa prática retira as coberturas vegetais, sem contar o uso de insumos agrícolas (fertilizantes, inseticidas, herbicidas entre outras).
No caso das hidrelétricas os problemas na geração de energia estão na construção das usinas, pois é necessário represar uma grande quantidade de água cobrindo imensas áreas de florestas, dessa forma coloca em risco a fauna e a flora, além da emissão de gases provenientes da decomposição de animais e vegetais contidos no fundo das represas. As energias solar e eólica produzem impactos quase insignificantes e são pouco utilizadas no Brasil.
As fontes não-renováveis correspondem a todo recurso natural que não tem capacidade de se renovar ou refazer, ou seja, que podem acabar (finitos). Dentre os recursos finitos com previsões para esgotar totalmente em pequeno, médio e longo prazo estão o petróleo, carvão, urânio, xisto e muitos outros.
Os recursos energéticos classificados como não-renováveis geralmente produzem poluentes superiores aos renováveis. Os impactos podem surgir a partir da emissão de gases dos veículos automotores, vazamentos em oleodutos, vazamentos de navios petroleiros e muitos outros.